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A description is given of the n-generated free algebras F~tek(n), n > 2, in the 
varieties kt(~k, k > 2, of modular ortholattices generated by the ortholattices MOk 
of height 2 with 2k atoms. Algebraic methods of the theory of orthomodular 
lattices are combined with natural duality theory for varieties of algebras. The 
procedures involved in the analysis of F~tck(n) generalize the techniques applied 
in the preceding paper, where the cases k = 2, n > 2 were solved. The free 
algebras are decomposed by central elements into products of canonical intervals. 
Previous methods are refined to accommodate the fact that the decompositions 
of F~tok(n) lead to intervals of k - 1 different types. Their structures are obtained 
from natural dualities for the varieties At(~, k > 2. Finally, Stirling numbers of 
the second kind are used to count the number of intervals.The structures of the 
free algebras F a~k(n) for k, n ~< l0 are explicitly displayed in a table. 

1. I N T R O D U C T I O N  

This is a continuation of Haviar et aL (1997), where a more detailed 

introduct ion to the topic is provided. We repeat only a few important  defini-  
tions and results here. The following basic facts about or thomodular  lattices 
can be found in Kalmbach (1983) and Beran (1984). 

An  orthomodular lattice is an algebra (L; v, ^, ' ,  0, 1) such that (L; v,  
A, 0, 1) is a bounded lattice a n d '  is the unary operation of or thocomplementa-  
tion. The operation ' is order-reversing with respect to the under ly ing  lattice 

order ~< and the following identities are satisfied: 

( a ' ) '  = a (1) 

a A a '  = 0  and a v a '  = 1 (2) 

J Department of Mathematics, M. Bel University, 974 01 Bansk~. Bystrica, Slovakia; e-mail: 
haviar@bb.sanet.sk, konopka@fhpv.umb.sk. 

2Mathematical Institute, University of Oxford, Oxford OXI 3LB, U.K.; e-mail: wegener@ 
maths.ox.ac.uk. 

2661 
0020-774819711200-2661512.5010 �9 1997 Plenum Publishing Corporation 



2662 Haviar, Kon6pka, and Wegener 

(a ^ b) '  = a '  v b '  and (a v b) '  = a '  ^ b '  (3) 

0 '  = 1, 1' = 0 (4) 

b =  ( b ^ a )  v [ b ^ ( b ^ a ) ' ]  (5) 

Here (5) is the o r t h o m o d u l a r  law. It has the equivalent form 

a < - b ~  b = a v ( b  A a ' )  

Let L be an orthomodular  lattice. The c o m m u t a t o r  of  elements x~ . . . . .  x~ 
L is defined by 

C(Xl . . . . .  xn) = V x~' A "'" A X~' (6) 
(il . . . . .  in)~ {0,1 }n 

where x ~ = xi and x~ = x'i .  The element ( c ( x l  . . . . .  x.)) l will be denoted 
by c'(x~ . . . . .  x~). In particular, the commuta to r  o f  two elements x, y, which 
plays an important role in our considerations, is given by 

c ( x , y )  = ( X A y )  V (X A y ' )  V (X' A y )  V (X' ^ y ' )  

A binary compat ib i l i t y  relat ion a ~ b on L is defined by 

a .-. b if a = ( a A b )  v ( a ^ b ' )  ( a , b  ~ L) 

and satisfies the following rules: 

a - - < b ~ a  .-. b (7) 

a - < b ' ~ a  .-. b (8) 

a .-* b ~ a  ,-. b ' ,  a '  .-. b, a '  ,-. b '  (9) 

a ~ b r c(a,  b) = 1 (10) 

In orthomodular  lattices the compatibil i ty relation is symmetric and the fol- 
lowing version o f  distributivity related to '~  holds: if M _C L is such that 
v M exists in L and a e L is such that a "~ m for every m ~ M, then 

a . - , v M  and a A ( v M )  = V ( a A m )  (11) 
m e M  

Using the previous rules, it is easy to show that 

c ( x l  . . . . .  x . )  .-. xi for every i = l, 2 . . . . .  n (12) 

and 

c ( x l  . . . . .  xn) ~ t ( x l  . . . . .  xn) 

for any n-ary term t and any x~ . . . . .  xn ~ L. 

03) 
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We shall often deal with intervals in L of the form [0, v] (v E L). 
These intervals can be considered as orthomodular lattices if one defines the 
orthocomplement of an element a e [0, v] in [0, v] to be a'  ^ v, where a '  
is the complement in L. 

Elements a ~ L which are compatible with every x ~ L are called 
cen t ra l .  The set Z(L)  of all central elements of L is a Boolean subalgebra of 
L, called the c e n t e r  of L. Moreover, 

a E Z(L) ,  v ~ L ~ a ^ v E 2,([0, v]) (14) 

The following fact about orthomodular lattices (Kalmbach, 1983, p. 20) 
enables us to decompose the free algebras in question into products of smaller 
lattices, the structures of which are more readily analyzed: 

c ~ Z (L )  r L ~- [0, c] • [0, c'] (15) 

The finitely generated free algebras under consideration lie within certain 
subvarieties of the variety of all orthomodular lattices. Let us recall some 
basic facts about the subvariety lattice of the variety of all orthomodular 
lattices 6~t  (Kalmbach, 1983, Chapter 2.9). At the bottom there is a three- 
element covering chain 

(see Fig. 1), where ~ and ~ are the varieties of trivial algebras and Boolean 
algebras, respectively, and ~(32 = V(MO2) is the variety generated by the 
orthomodular lattice MO2 of height 2 with 4 atoms a, a ' ,  b, b '  (see Fig. 2). 

q 

I 

MOk+~ I 
MOk~ 

I 

M O a ~  

"M 02 I 

;I 
Fig. 1 
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1 

b I 
a 

Fig. 2 

In general, MOk (k -- 2) denotes the orthomodular lattice of  height 2 
with 2k atoms. A block of MOk is a maximal Boolean subalgebra {0, a, 
a ' , l  } of MO~ where a is an atom. It is easy to see that each MOk (k -- 2) 
satisfies the modular law 

x<-- z ~ x v ( y  ^ z )  = ( x v  y) A z  

Let At~ denote the variety of all modular ortholattices. The only finite 
subdirectly irreducible algebras in this variety are MOk (k -- 2) and 2. Hence 
the subvarieties of At~ form the chain 

of type o~ + 1, where At(~k = V (MOk) is the variety generated by MOg. 
The strict inclusions At~k C At(~k§ t are given by the fact that the generator 
MOk satisfies 

k + l  

A C'(Xi, Xj) = 0 
i,j= 1 
i<j 

but MOk+l does not. 
We use the notation Fv(n) for the free algebra with n generators in a 

variety V. Clearly, 

Fe~(1) = F~(1) -- 22 

where 2 denotes the two-element Boolean algebra 2 = ({0, 1}; v, ^, ', 0, 
1). Further (Beran, 1984, III.2), 

Fe~(2) --- F~(2) • MO2 ------ 2 4 • MO2 = F~c2(2) 

The free algebra F~t~(3) is infinite since it has the orthomodular lattice of 
closed subspaces of R 3 as a homomorphic image. However, the algebras 
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F~tek(n) (k >-- 2, n > 3) are finite because the varieties At~k are locally finite 
(Clark and Davey, 1998, Chapter 1.3). 

In the preceding paper we described the free algebras F~tez(n) in the 
variety Ate2 for every n > 2 and determined their cardinalities. Let us recall 
the main results. 

Theorem 1.1 (Haviar, et al., 1997, Theorem 3.3). For any n >- 1, 

F~t~2(n) ~ F~(n)  • (MO2) +~") 

where 

qb(n) = 2 "-3 �9 (3" - 2 "+l + 1) 

Corollary 1.2 (Haviar et al., 1997, Corollary 3.4). For any n >- 1, 

IF~2(n)l = 22" . 62n-3.(3n-2n+t+l) 

To obtain these results, we first decomposed Fkt~z(n) by suitable central 
elements into simple canonical intervals of the form [0, Ca] for certain term 
functions Cc = Ca(xj . . . . .  x,). Then we showed that each such interval [0, 
C~] was isomorphic to (MO2) 2"-z by using methods of natural duality theory 
(Davey and Werner, 1983; Clark and Davey, 1998). This was the crucial part 
of our method. Finally, we used ordinary combinatories to count the number 
of canonical intervals [0, Ca] by establishing a one-to-one correspondence 
between the term functions Cc(x~ . . . . .  x,)  and n-element graphs G containing 
a complete bipartite subgraph and isolated vertices. This technique was illus- 
trated by a detailed discussion of the case F~tcz(3) in Haviar et al. (1997). 

The aim of this paper is to generalize this method to describe finitely 
generated free modular ortholattices F~ck(n) with n generators in the varieties 
At(~k, where n > 2, k > 2. The situation is slightly more complex here. As 
it turns out, the decomposition of the free algebra F~tek(n) (k > 2, n > 2) 
consists of canonical intervals [0, C~p(xl . . . . .  x,)] of k - 1 different types 
corresponding to graphs Gp, p e {2 . . . . .  k}, containing a complete p-partite 
subgraph and isolated vertices. To describe the canonical intervals [0, Ccp] 
in F~t~k(n), we need to build up an effective natural duality for the variety 
kt~k. To count the number of graphs of each type, we use the Stirling numbers 
of the second kind. We present formulas for the structure of F~t~k(n) and its 
cardinality, and give a table showing explicitly the structures of F~o~ (n) for 
k , n  < 10. 

2. NATURAL DUALITIES FOR THE VARIETIES AtGk 

For the basic facts about natural duality theory we recommend Davey 
(1993) and Clark and Davey (1998). A very brief summary of the basic 
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concepts can be found in Section 2 of Haviar, et al. (1997). Here we recall 
only a few facts of the theory. 

Let M_.M_ = (M; F) be a finite algebra. Let M = (M; G, H, R, "r be the 
discrete topological structure, in which the set M~s endowed with the discrete 
topology -r and with (finite) families G, H, and R of operations, partial 
operations, and relations, respectively. By a graph of an n-ary (partial) opera- 
tion h: M n ~ M we mean an (n + 1)-ary relation 

h D = {(xl . . . . .  xn, h(x))l(xl  . . . . .  xn) E M ~} C_ M ~+t 

The structure M is said to be algebraic over  M if the relations in R and the 
graphs of operations and partial operations in G U H are subalgebras of 
appropriate powers of  M__. Throughout this paper we are assuming that M = 
(M; G, H, R, "r) is algebraic over M. 

Let ~ = ISP(M) be the quasi-variety generated by M__ and let �9 = 
IScP(M) be the class of all structures which are embeddable as closed 
substructures into powers of M. Let A be an algebra in ,~ and let D(A) 
denote the set of all ,~-homomorphisms A ~ M. Similarly, for X ~ ~,  let 
E(X) denote the set of all ~-morphisms X ~ M, which are the continuous 
maps preserving the graphs of all (partial) operations in G LI H and all 
relations in R. (We recall that for any set X C M t, a map ~p: X ~ M preserves 
the relation r C_ M" if, whenever ~1 = ( X l i ) i E l  . . . . .  Xn : (Xni)i~l are such 
that [Xli . . . . .  xni] E r for every i E I, then [q~(~l) . . . . .  q0(~,)] E r.) Since 
M is algebraic over M, D(A) and E(X) can be understood as members of 
~e and ~ ,  respectively, where we endow these sets of  maps pointwise with 
the structures of M and M. 

Let A E ~ ,  X E ~ and let e A" A ~ E D  (A) and ~x: X ~ D E  (X) be 
given by evaluation: 

ea(a)(h) = h ( a )  for every a E A  and h ~ D(A) 

ex(y)(q~) = q~(y) for every y E X and q~ ~ E(X) 

The maps ea, ~-x are embeddings whenever M is algebraic over ___M, in which 
case we say that M yields a pre-duality on ~t. The structure M (or just 
G U H tO R) is said to yield a (natural) duality on s~ if for every A ~ ,,~ 
the embedding ea is an isomorphism. In this case every algebra A in ~ is 
isomorphic to the algebra ED(A) of all continuous (G U H U R)-preserving 
maps from D(A) to M, a representation which allows us to formulate Theorem 
2.2. We say that M (or G tO H U R) entails an n-ary (partial) operation h if 
for every X e ~_each member of E(X) preserves the graph h [] as an (n + 
1)-ary relation. The structure M entails a set of (partial) operations K if it 
entails each k ~ K. The role which entailment plays in order to obtain 
workable dualities is discussed in Davey. et al. (1995). Let us quote two 
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results here. If e and r are unary algebraic (partial) operations on M [i.e., 
(partial) endomorphisms of M], then {e, r} entails the composition r o e and 
the intersection r ~ fq e r~. 

A variety generated by an algebra M is arithmetical if and only if M 
has an arithmeticity (Pixley) term function p(x, y, z): M 3 ~ M satisfying 

p ( a , b , b )  = p ( a , b , a )  = p ( b , b , a )  = a  for all a , b  ~ M  

Now we are ready to repeat a result from Haviar et al. (1997, Theorem 
2.1) which is an immediate consequence of the Unary Partial Algebra Theorem 
in Clark and Davey (1996). 

Theorem 2.1. Assume that a subdirectly irreducible algebra ___M generates 
an arithmetical variety ~ = ISP(M). Let ~ be the set of all unary (partial) 
endomorphisms of M. Then any set H of unary (partial) endomorphisms of 
M that entails ~ yields a duality on ~ .  

It is well known that an n-generated free algebra in the variety generated 
by M is isomorphic to the algebra of all n-ary term functions on M. A further 
description of this algebra is obtained by natural duality theory (see also 
Haviar et al., 1997, Theorem 2.2). 

Theorem 2.2. Let ~ = ISP(M) be a variety and let M = (M; G, H, R, 
"r) yield a duality on M. The n-generated free algebra Fa(n) in the variety 
generated by M__ is isomorphic to the algebra of all (G U H U R)-preserving 
functions from M n to M. 

If G U H to R yields a duality on ISP(M__), then the two representations 
of the free algebras are the same, as it can be shown that the continuous 
(G U H to R)-preserving functions from M n to M are exactly the n-ary term 
functions on M (Davey, 1993, p. 87). 

We may now turn our attention to the varieties ~(~k = V(MOD which 
coincide with the quasi-varieties ISP (MOk) (Clark and Davey, 1998, Chapter 
1.3). In order to use the representation of finitely generated algebras in at/t(~k 
in terms of (G tO H tO R)-preserving maps, we need to exhibit a workable 
duality for the varieties aR(~k. The term function 

p(x, y, Z) = (x v Z) ^ (x v y')  ^ (Z v y') 

^ [(c (x, y) A Z) V (C (y, Z) ^ X) V (C (X, Z) ^ X ̂  Z)] 

is an arithmeticity term function for the generator MOk, because if x, z belong 
to the same block of MOk, then (x v z) ^ (x' v z) = z and c(x, z) = 1; and 
if x, z are atoms of different blocks of MOk, (x v Z) ^ (x' v Z) = 1 and 
c(x, z) = 0. Thus, by Theorem 2.1 any set H which entails the set of all 
unary (partial) endomorphisms of MOk, ~ l ,  yields a duality on ~t(~k. For 
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k --- 2, every (total) endomorphism of MOk is an automorphism. Each partial 
endomorphism of MOt must map the top to the top and the bottom to the 
bottom. If a partial endomorphism maps an atom a to c e {0, 1 }, then it must 
map a '  to c' e {0, 1 }, and such partial endomorphisms are not extendable. Any 
other partial endomorphism must map all atoms in its domain to distinct 
atoms of MOk, while preserving the complementation. Partial endomorphisms 
of this kind extend to automorphisms, and their graphs can be obtained by 
intersection from the automorphism group, Aut(MOk). Similarly the partial 
endomorphism with graph {(0, 0), (1, 1)} is entailed by Aut(MOk). So let 
us consider a nonextendable partial endomorphism r mapping onto {0, 1 }, 
with graph r [] = {(0, 0), (a, 0), (a', 1), (1, 1)}, where a is some atom in 
MOk. Then H = Aut(MOk) tO {r} entails all partial endomorphisms of the 
same type as r by composition of the automorphisms with r. Since intersection 
and composition of partial endomorphisms are admissible entailment con- 
structs, H = Aut(MOk) tA {r} entails ~1 and hence the next result is an 
immediate consequence of Theorem 2.1. 

Theorem 2.3. Let a be an atom of MOt  and let r be the partial endomor- 
phism with graph r D = {(0, 0), (a, 0), (a', 1), (1, 1)}. Then for k --> 2, 
H = Aut(MOk) tA {r} yields a duality on the variety At~ k = ISP(MOk). 

We may formulate a corollary to Theorems 2.2 and 2.3. 

Corollary 2.4. Let H = Aut(MOk) tO {r}. Then the n-generated free 
algebra F~tok(n) in the variety AtO~ is isomorphic to the algebra of all H- 
preserving functions from (MOk) n to MOk. 

3. F INITELY GENERATED FREE A L G E B R A S  IN AtCk 

Let F~tck(n) denote the free orthomodular lattice on n generators in the 
variety At(~ k = ISP(MO~). In the last section we showed that F~tok(n) is 
isomorphic to the algebra of all those functions from (MOk) n to MOk which 
preserve H = Aut(MOk) L/ {r} and noted that these functions are exactly 
the n-ary term functions on MOk. This representation allows us to find central 
elements to decompose F~tok(n) into a product of intervals which we can 
evaluate in terms of H-preserving functions. 

The first stage in the analysis of the structure of F~tck(n) is to find central 
elements within F~tck(n) by which to decompose F~tok(n). Let t(xl . . . . .  xn): 
(MOk) n -+ MOk be a term function into {0, 1 }. Then for any term function 
u (xl . . . . .  x,): (MOk) ~ --' MOk, 

t(x~ . . . . .  x . )  = ( t ( X l  . . . . .  x . )  ^ u (x~  . . . . .  x . ) )  

V ( / ( X  1 . . . . .  Xn) A g t ( x  I . . . . .  Xn) ) 
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and therefore any term function t(x~ . . . .  , x . )  mapping into {0, 1 } is a central 
element of F~c~(n). Commutators take only values 0 and 1 and hence by 
(15) we may write 

F~tr = [0, c (x l  . . . . .  x.)] • [0, c ' (x l  . . . . .  x.)] 

Let us analyze the structure of  the interval [0, c(xt . . . . .  x.)] first. 

Theorem 3.1. The interval [0, c ( x l  . . . . .  x.)] in F~tck(n) is isomorphic 
to the n-generated free Boolean algebra Fa(n) .  Hence 

[0, c (x l  . . . . .  x.)] ~ 2 2" 

P r o o f  We define n-ary functions ai: (MOk)" --* MOk, i = 1 . . . . .  2 ", in 
the following way: 

r 
a~ = xl' ^ x~ ^ x~ ^ "." ^ x .  ^ C(Xl,  . . . ,  x . )  

p 
a2 = x~ ^ x~ ^ x~ ^ . . .  ^ x .  ^ c(x~ . . . . .  x . )  

t 
' ^ x~ ^ "'" ^ x . - 1  ^ x .  A C(Xl, Xn) O n + l  ~ X l  �9 �9 �9 

an+ 2 = X 1 ^ X 2 ^ X; "'" ^ X~ ^ C(X 1 . . . . .  Xn) 

a2, = x |  A x 2  A X 3 " ' "  A X n A C ( X  1 . . . . .  X n )  

One can easily show that ai <-- aj (i.e., ai, a s are or thogonal )  for all i, j E 
{ 1 . . . . .  2"}, i :~ j, hence by (8), ai "~ aj. Now we use the following fact 
about orthomodular lattices (PtS_k and Pulmanov~i, 1991, Propositions 1.3.27 
and 1.3.29): if A is a subset of an orthomodular lattice L such that every two 
elements of A are compatible, then A can be embedded into a Boolean 
subalgebra of L. Let us put A = {al . . . . .  a2,, } C [0, c (x l  . . . . .  xn)]. Then 
obviously A generates a Boolean subalgebra of  [0, c (xt . . . . .  xn)], say B with 
2" atoms a~ . . . . .  a2,, which is isomorphic to the free Boolean algebra 22". 
It remains to show that every element of the interval [0, c(x~ . . . . .  x,)] 
belongs to B. 

Note that by (6)-(8) and (11) 

xi ^ c(x~ . . . . .  x . )  = xi ^ V x~' ^ ... ^ x~.") 
( i l  . . . . .  in)~ {O,| } n 

V (x, ^ x9 ^ "'" ^ x/") 
(i| . . . . .  in)e {0,1 }n 

= V(a  i E A l a  s <- x~) (16) 
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/ \ 
x[  AC(Xl . . . . .  X.) = X [  A [  V X'~|A " AXe"| 

\ (il . . . . .  in) E {0,1 }n / 

= V (x~ AXe' A "'" AXe") 
(il . . . . .  in)~ {0,1 }n 

= V ( a  7 ~ a l a j  <-- x [ )  (17) 

for all i = 1 . . . . .  n. Each element b ~ [0, c (xl . . . . .  x.)] is o f  the form 
b = t (Xl  . . . . .  x . )  A C(Xl . . . . .  X. )  for some n-ary term t. Using (3), the term 

t ! t (x~ . . . . .  x.) can be written in a form l (x~ . . . . .  x . ,  x~ . . . . .  x . ) ,  where l (z~,  
t . . . .  z2.) is a lattice term in which x~ . . . . .  x., x~ . . . . .  x .  are substituted for 

z~ . . . . .  z2.. Since c = c(x~  . . . . .  x . )  is compatible with every element o f  
F~t~k(n), by (11) we have 

t t ( x l  . . . . .  x . )  ^ c = l (x l  . . . . .  x . ,  x l  . . . . .  x ' )  A C 

? r 
= I ( X 1 A C  . . . . .  X.  A C ,  X I A C  . . . . .  X .  A C )  

Using the formulas in (16) and (17) for xl ^ c . . . . .  x .  A C and x'l ^ c . . . . .  
x" A C, respectively, b can be expressed as a Boolean term function b ( a b  
. . . .  a.). This shows that b lies in B, completing the proof. �9 

To evaluate [0, c ' ( x t  . . . . .  x.)] we decompose this interval further. Recall  
that if  a is a central element in the orthomodular  lattice L and v is an element 
o f  L, then a A V is central in [0, v] C L. Commutators  are central elements 
in F~t~k(n), hence we may use the commutators  c (xi, x j )  for i, j = 1 . . . . .  n, 
where i < j ,  to arrive at the decomposit ion 

[O, e t ( x  1 . . . . .  x n ) ] ~  17 [ 0 ,  R ewi,J(xi, x j ) ^ e t ( X l  . . . . .  x . ) ]  
~E {0,1} N L i , j=l  / 

i<j 

where the product  is taken over all N-tuples 

qr = (WLz . . . . .  Wl,n, w2,3 . . . . .  wn-l,n) ~ {0, 1 }N 

where N = (~) and 

. f c,(xi, x j )  if wi,j  = 0 
C wi,J(xi, x j )  

I C (xi, xj)  if  wi,j  = 1 

As in our previous paper (Haviar e t  al . ,  1997) we may construct a labeled 
unoriented graph G .  (without multiple edges and loops) for every term 
function 
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t.(x~ . . . . .  x . )  = / ~  c WiJ(xi, xj) ^ c'(x~ . . . . .  x . )  
i,j= 1 
i<] 

on a vertex set {x~ . . . . .  x~} with edges xixj whenever  w; j  = 1 for i < j. 
Given such a graph G, we are able to reconstruct  the term function t~,, also 
denoted by C~. Thus any one of  ~,  t ,  (= CG), and G determines the other 
two. To analyze the structure of  [0, c'(xi . . . . .  x,)] we need to evaluate the 
intervals [0, t,(xl . . . . .  x~)] for every N-tuple ~ .  Some  of  these intervals are 
trivial; Proposition 3.2 gives a necessary and sufficient condition on the 
structure of  the corresponding graph G for  [0, t~(xl, . . . ,  x~)] = [0, Cc(xl, 
. . . .  x,)] to be nontrivial. 

Proposition 3.2. Let Cc(xl . . . . .  x~): (MOk) ~ ~ MOk be the term function 

C wi'J(xi, Xj) A Ct(3r . . . . .  Xn) 
i,j= 1 
i<j 

and G be the associated graph. Then the fol lowing condit ions are equivalent: 

(a) C~(xl . . . . .  x~) is not identically equal to zero; 
(b) there exist e lements  a~ . . . . .  an ~ MOk with the fol lowing 

properties: 
(i) C~(al . . . . .  a . )  = 1; 
(ii) the elements a~ . . . . .  a .  are not all f rom the same block of  MOk; 
(iii) x~xj is an edge of  G if and only if  ai, ay are a toms of  different 
blocks in MOk; 

(c) Gp :=  G consists of  I isolated vert ices (0 <-- l <-- n - p)  and one 
connected component  which is a comple te  p-part i te  graph (2 <-- 
p<-n) .  

Moreover ,  provided G = Gp is as in (c), then there are exact ly  2n(k)p! n- 
tuples (al . . . . .  a . )  E (MOk) n such that C~(al . . . . .  an) is nonzero.  

Proof (a) ~ (b). Suppose (a) holds, then there exist al . . . . .  a .  ~ MOk 
such that CG(al . . . . .  a.) ~ O. This implies that cWiJ(ai, aj) and c'(al . . . . .  
a.)  are nonzero for all i and j ,  and hence must  be 1, which forces C~(al, 
. . . .  a . )  = 1. Now c'(a~ . . . . .  a.) is equal  to 1 if  and only if  there exist i 
and j such that a~, aj are atoms of  different b locks  of  MOk.  For such i, j ,  
where i < j, c ~a(ai, aj) = 1 if  and only if wij = 1 if and only if xixj is an 
edge in G, proving (b). 

(b) ~ (c). Let al . . . . .  an E MOk be as in condit ion (b). By (b)(iii), 
for a~ e {0, 1 }, x~ must  be an isolated vertex in G. I f  ai is an a tom in MOk, 
then by (b)(ii) there exists j such that aj is an a tom of  a different b lock and 
by (b)(iii), for all such i,j there is an edge x/xj in G. Thus G has isolated 
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vertices associated with those ai ~ {al . . . . .  an} which are 0 or 1 and the 
other vertices may be partitioned according to which block the corresponding 
ai come from, giving a complete p-partite graph by (b)(iii), with p greater 
than or equal to 2 by (b)(ii). This proves (c). 

(c) ~ (a). We show that, given a labeled graph G = Gp as in (c), we 
may choose al . . . . .  an ~ MOk such that Ca(a1 . . . . .  an) is nonzero: the 
value of Ca at (al . . . . .  an) is nonzero if and only if all the expressions 
c wi.J(ai, aj) and c ' (al  . . . . .  an) are 1. Let us consider the connected component 
of G first, which is partitioned into p -> 2 parts. Let xi be a vertex in the 
connected component. Then for every j such that xixj is an edge of  G, Ca 
contains the term c'(xi, xy) if i < j or c'(xj,  xi) i f j  < i. This term obviously 
takes value 1 at (ai ,  a j )  if and only if we choose ai, aj from different blocks 
of  MOk. For xj lying in the same block of the p-partite graph as xi, Ca contains 
the term c(xi ,  xj) if i < j or c(xj,  xi) i f j  < i. This term takes value 1 at (ai, 
aj) if and only if ai, aj are from the same block of MOk. I f  xi is an isolated 
vertex in G, then any term c wiJ(xi, xj) in Ca becomes c (xi, xj) [and similarly 
for cWj, i(xj, xi)], so ai has to lie in the same block as aj for all j .  This forces 
us to choose a i tO be either 0 or 1. So to make Ca nonzero at (al . . . . .  an) 
we allocate a unique block of MOk to each block of the p-partite component 
of G and choose the corresponding a; to be atoms of the associated blocks. 
For isolated xi we choose a i ~ {0, 1 }. This proves (a). 

The above discussion allows us to count the number of  n-tuples (al, 
. . . .  an)  at which Ca is nonzero. We saw that we needed to allocate p blocks 
of  MO~ in any order to the p blocks of  the connected p-partite component. 
There are two choices for any a~ once the order of the blocks has been chosen, 
namely either of  the two atoms in the corresponding block for xi in the 
connected component, or 0 or 1 for isolated x~, giving 2n(pk)p! such n-tuples 

(al . . . . .  an). �9 

The next task is to analyze the structure of the intervals [0, Ca(Xl . . . . .  
xn)] associated with graphs G = Gp described in Proposition 3.2(c). This can 
be done using the duality for d/~k given by H = Aut(MOk) LI {r}. The 
interval [0, Ca(xi . . . . .  xn)] is isomorphic to the algebra of  all those H- 
preserving functionsf:(MOk) n ~ MOk (which are the same as the n-ary term 
functions on MOk) which are pointwise less than or equal to Ca(Xl . . . . .  xn). 
Any such function f must take value zero whenever the term Ca does. Let 
Ta be the set consisting of the 2n(pk)p! n-tuples (ai . . . . .  an) from (MOk) ~ at 
which Ca is nonzero, that is Ca(at  . . . . .  an) = 1. 

The function f :  (MOk) ~ ~ MO~ preserves a (partial) endomorphism e 
with graph e ~ if for _a = (al . . . . .  an), _b = (bl . . . . .  bn) ~ (MOD n, 

(al, bl) ~ e ~ . . . . .  (an, bn) ~ e D =:> (f(a) ,  f(_b)) ~ e D (18) 
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Let r be the partial endomorphism with graph r ~ = {(0, 0), (a, 0), (a ' ,  1), 
(1, 1)}, where a is an atom of MOk. For the left-hand side of  (18) to hold, 
the elements a i must lie in {0, a, a ' ,  1 } and the elements bi in {0, 1 }, hence 
neither _a nor _b can lie in To. Therefore (f(_a), f ( b ) )  = (0, 0) �9 r D for any 
f --< Co, making f automatically r-preserving. 

Before we discuss the preservation of the automorphisms, let us consider 
the action of the automorphism group Aut(MOk) on (MO~) n. The following 
concepts and basic facts about group actions can be found, for example, in 
Neumann et  al. (1994). The group Aut(MOk) acts in the natural way on MOk 
by permuting the atoms. For an automorphism a and an element a in MOk 
let us denote the action of a on a by a ~ [we could also write a (a)  or a a  
depending on whether we treat a as a function or a permutation]. We may 
extend the action of Aut(MOk) on MOk pointwise to (MOk) n, so for _a = 
(al . . . . .  an) �9 (MOk) n and a ~ Aut(MOk), a ~ = (a~' . . . . .  a~) �9 (MOk) n. 
For such a and ot we denote the orbit of  a by 

Orb a = {_a~l[3 �9 Aut(MOk)} 

the stabilizer of  _a by 

Stab _a = {1~ �9 Aut(MOk)la_ ~ = a} 

and the set of elements kept fixed by et under the action on MOk by 

fiXMOkCt = {b �9 MOklb ~ = b} 

A version of Lagrange's theorem (Neumann et  al., 1994, Corollary 6.2) 
asserts that, for all _a ~ (MOk) ", 

IAut(MOk)l = IOrb al �9 IStab al (19) 

To compute the size of  IAut(MOk)l for k --> 2, note that any automorphism 
is determined by the images of  k atoms, one from each block, which have 
to be mapped to atoms of distinct blocks of  MOk, giving two choices per 
such atom once the order of blocks has been fixed. Hence IAut(MOk)l = 2kk!. 

We may rewrite (18) for automorphisms e t e  Aut(MOD. The function 
f :(MOk) n ~ MOk is a-preserving if for all a = (al . . . . .  an) ~ (MOk) n, 

f(_a'~) = f(_a) '~ (20) 

Let us return to the interval [0, CG(x~ . . . . .  x,)] associated with a graph 
G = Gp (2 --- p - k). For any et �9 Aut(MO~), 

a �9 TG if and only if a ~ �9 Tc 

On the set (MOk)n\Tc, (20) is automatically satisfied, as f(b_) = 0 for all 
b ~ (MOk)n\T~. Let _a �9 T~. The coordinates of  _a lie in exactly p blocks of 
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MOk and any such _a is fixed by exactly those automorphisms which only 
permute atoms in the remaining k - p blocks of MOk, that is, IStab _al = 
IAut(MOk_p)l = 2k-P(k - p)! ,  which does not depend on a. By (19) the set 
Ta is partitioned by the automorphism action into orbits of size 

,Aut(MOk), 2kk, _ 2p(k)p! 
IOrbal - IStab_al - 2k-P(k - p)!  (21) 

\- / 

To define an Aut(MOk)-preserving map f < C~, we cannot freely choose 
images from MOk for representatives of the orbits within Tc and then use 
(20) to define the images of the other members of Tc (as we did in the 
previous paper for k = 2), because when p < k, there exist automorphisms 

4:[3 such that for any representative _a of orbit Orb g, $~ is equal to _a~, 
restricting the choices for f ~ )  to those which satisfy f(_a) '~ = f($)~. 

Now for b ~ MOk, b '~ = b ~ if and only if b '~3-1 = b if and only if 
e~[3 -1 ~ Stab b if and only i fb  E fiXmok(e~[3-1). In other words, an Aut(MOk)- 
preserving function f is restricted to values f(_a) ~ fiXmOk(~/), for ~/ ~ Stab 

_a, SO 

f(_a) ~ fq fiXMOk(~/) (22) 
T e Stab a 

The stabilizer of a consists of exactly those automorphisms which only 
permute the k - p blocks not covered by the coordinates of _a hence 
Nv~Staba_ fiXmo~(~/) is the set of atoms of the p blocks covered by _a plus 0 
and 1, which are always fixed. When ordered by the usual order relation -< 
on MOb 

r )  fiXmOk("~) ~-- MOp (23) 
T ~Stab a 

So to construct the Aut(MOk)-preserving functions f :  (MOk) n --~ MOk 
which are pointwise less than or equal to a given term function C~(xl . . . . .  
x,), we need to define f to be zero whenever Cc is and partition the set Tc 
on which Cc is nonzero into orbits under the automorphism action. By (22) 
we may freely choose the image f(a)  for each orbit-representative _a within 
Nv~Stab a fiXMOk(~/), which forces the values of the other points in Orb a to 
be f(_a ") -- f(a)~; so by (23) each orbit within Tc contributes a factor MOp 
to the algebra of Aut(MOk)-preserving functions f :  (MOk) n --~ MOk. By (2 l) 
the orbits are all of the same size and the number of orbits within T~ is 

- -  2 n - - p  
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Hence 

[0, Cc(xl . . . . .  x,)] ~ (MOp) 2"-p (24) 

The interval [0, c'(xl . . . . .  xD] is the product of intervals [0, CG(Xl, 
. . . .  x,)] over all graphs G = Gp (2 ---- p -- k) satisfying condition (c) of 
Proposition 3.2. Now the number of labeled complete p-partite graphs on m 
vertices is the same as the number of partitions of a labeled m-element set 
into exactly p parts, which is given by the Stirling numbers S (m, p) of  the 
second kind (Aigner, 1979; 2.66, 3.29, and 3.39): 

S(m,p )  = p S ( m -  l , p ) +  S ( m -  1, p -  1 ) =  )-[.t s=~ ( -1 )P - "  sm 

Since p ranges from 2 to k and the number of isolated vertices l from 0 to 
n - p, the number of the graphs G = Gp on n vertices is given by 

dp'(n, p) = ~ S(n - l, p) 
/=0 

Note that for n = 1, +'(n, p) is zero because p is always greater than or 
equal to 2. Let us define 

+(n, p) = 2"-P+'(n, p) 

It can easily be verified that when p = 2, which holds whenever k = 2, dp(n, 
2) corresponds to the function ~b(n) in Theorem 1.1, as to be expected. Now 
by (24) and above, eachp, where 2 < p < k, contributes a factor of (MOp) +('p) 
to the interval [0, c'(xl . . . . .  x,)]. Hence 

k 

[0. c ' ( x ,  . . . . .  x.)] ~ I-I [0, Co(x1 . . . . .  x.)] ~ lq (MOp)*(n~) 
G p=2 

and the final results follow immediately. 

Theorem 3.3. For any n ---> 1, k > 2, 

k 

F~tok(n) ~ F~(n) • I-[ (MOp) +(""~ 
p=2 

where FB(n) is the n-generated free Boolean algebra 2 z", 

~b(n, p) = 2"-"~b'(n, p) = 2 "-p ~ s(n - l, p) 
l=0 
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and the Stifling numbers of the second kind are given by 

S(m, p) = p.l s=l ( -  l )p- '  S m 

Corollary 3.4. For any n -> 1, k -> 2, 

k 
IF~tok(n) I = 22"" ~I (2(p + l))2n-pE7 -p(7)S(n-l'p) 

p=2 

where the Stifling numbers of the second kind are defined by 

S(m, p) = p.l ,=, ( -  1)P-" sm 

Finally, we compute a table from which one can read off the structure 
of any free algebra F~t~k(n) for k, n <-- 10. If we define MOl to be 2 and 
extend the formula d~(n, p) to include values at p = l by defining 

~b(n, 1) = 2" 

then we may write 

k 

F~tok(n)-~ [~ (MOp) +(n'p) 
p=l 

Hence it is enough to give a table of values of  ~b(n, p), for 1 - n, p ~ lO, 
to describe the structure of  F~tvk(n). To determine these values we need to 
compute the binomial coefficients (7) and the Stifling numbers of the second 
kind, S(n - l, p), for 0 --< l < p. Table I therefore gives part of Pascal's 
triangle, completed using the recursive definition 

(0)=1 
( k ) = ( k -  l ) + ( n k  1 ) 

Note that i fk  is greater than n, then (~) is O, shown as empty cells in the table. 
Table II displays the required Stifling numbers, which can also be defined 

recursively by 

S(O, O) = 1, S (n, O) = 0 for n > 0 

S (n , k )  = S ( n -  l , k -  1) + k"  S(n - 1, k) 

The empty cells are to be filled with O's again. 
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Table I. Binomial Coefficients (~) (Pascal's Triangle). 

(~) k=0 1 2 3 4 5 6 7 

2677 

8 9 10 

n = l  
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 1 
3 3 1 
4 6 4 1 
5 10 10 5 1 
6 15 20 15 6 1 
7 21 35 35 21 7 
8 28 56 70 56 28 
9 36 84 126 126 84 

10 45 120 210 252 210 

1 
8 1 

36 9 1 
120 45 10 

T h e  f o l l o w i n g  p r o c e d u r e  e s t a b l i s h e s  T a b l e  I I I  o f  v a l u e s  o f  do(n, k): t he  

f i r s t  c o l u m n ' s  e n t r i e s  a re  d0(n, 1) = 2 n. O t h e r  e n t r i e s  are  g i v e n  b y  do(n, k) = 
2n-k  n-k ~l=0 (7) S (n - l, k). For n less than k, do(n, k) takes value 0. For n --> 
k, the sum in the expression is taken over the products of row n entries of 
Pascal's triangle with column k entries of the Stifling table. The result is 
then multiplied by 2 "-k to give d0(n, k). 

Now, to determine, for example, the structure of the free algebra F~t~, 4 

(6), we consider the first four entries in the 6th row of Table III. The first 
entry gives the power of MOj = 2 in F~to4(6), the next one gives the power 
of MO2 etc. Thus 

F~t~4(6) ~-- 264 • ( M O 2 )  4816 )< ( M O 3 )  2800 )< ( M O 4 )  560 

and 

IF,to4(6)l = 264 �9 (2(2 + 1)) 4816" (2(3 + 1)) 2800. (2(4 + 1)) 560 

Table II. Stirling Numbers of the Second Kind S(n, k) 

S(n, k) k = 1 2 3 4 5 6 7 8 9 10 

n = l  1 
2 1 1 
3 1 3 1 
4 1 7 6 1 
5 1 15 25 10 1 
6 1 31 90 65 15 
7 1 63 301 350 140 
8 1 127 966 1701 1050 
9 1 255 3025 7770 6951 

10 1 511 9330 34105 42525 

1 
21 1 

266 28 
2646 462 

22827 5880 

1 
36 l 

750 45 
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Table IlL 

~b(n, k) k= 1 2 3 4 

Haviar, Kontpka, and Wegener 

Values of dp(n, k) 

5 6 7 8 9 10 

n= l  2 
2 4 1 
3 8 12 1 
4 16 100 20 1 
5 32 720 260 30 1 
6 64 4816 2800 560 42 1 
7 128 3 0 9 1 2  27216 8400 1064 56 1 
8 256 193600 248640  111216 21168 1848 72 
9 512 1194240 2182720 1360800 365232 47040 3000 

10 1024 7296256 18656000 15790720 5743584 1023792 95040 

1 
90 1 

4620 110 

Also note that, for k > n, F~t~k(n) is equal to F~t~,,(n) and that, for k < n, 
F~tek+~(n) has an additional nontrivial  factor (MOk+l) ~'<n'k+ 1) when  compared 

to the structure of F~tck(n). 
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